MATH2050B Mathematical Analysis I

End of term Make-up Test suggested Solution*

Question 1. Let f : R — R and (z,) a seq of real number s ( unless explicitly otherwise), Q1

State each of the following definitions/notations.

State the negation for (d) and the negation for (e).
Solution:
(a) For any M € R, there exists N € N such that z,, < M for all n > N.
(b) For any € > 0, there exists M € R such that |f(z) —¢| < € for all > M.
(c) For any ¢ > 0, there exists ¢ > 0 such that for any z € (a,a + 9),
If(z) — ¢ <e.
(d) For any € > 0, there exists ¢ > 0 such that for any x € (xg — 8, ¢ + ),

[f(z) = f(@o)| <e.
Negation: There exists an g9 > 0 such that for every ¢ > 0 there exists x5 € (xg — 0,0 + )
satistying |f(zs) — f(z0)| > €o.
(e) For any € > 0, there is a §(g) > 0 such that if z,u € R are any numbers satisfying | — u| <
d(e), then |f(z) — f(u)] <e.

Negation: There exists an €y > 0 such that for every § > 0 there are points x5, us in R such that
|zs — us| < 6 and |f (xz5) — f (us)| > eo.

*please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.



(f) The limit superior of (x,,) is the infimum of the set V of all v € R which satisfies that there
exists N (v) € N such that z,, <wv for all n > N(v).

Question 2. State each of the following results/theorems:
a) The well-order properties result for Z in R.

b) The interval charaterization theorem.

¢) The nested interval theorem.

d) The Monotone Convergence Theorem for seq.

(
(
(
(
(e) The Monotone Convergene Theorm for functions.
(f) The max-min value theorem.

(g) The root theorem (or the Intermediate-Value Th.)
(h) The uniform continuity theorem.

(i) An order-preserving result for seq.

(j) An order-preserving result for functions.
Solution:

(a) Any non-empty bounded below subset of Z has a least element.

(b) If S is a subset of R that contains at least two points and has the property
if x,y € S and x < y, then [z,y] C S,

then S is an interval.

(c) If I, = [an,bn],n € N, is a nested sequence of closed bounded intervals, then there exists a

number £ € R such that € € I,, for all n € N.
(d) A monotone sequence of real numbers is convergent if and only if it is bounded. Further:

(i) If X = (z,,) is a bounded increasing sequence, then

lim (x,,) = sup {x,, : n € N}.
(ii) If Y = (y,) is a bounded decreasing sequence, then

lim (y,,) = inf {y, : n € N}.
(e) Let f: I — R be increasing and (a,b) C I. Then

(i) limg oy f =inf{f(x):x €,z >a},



(ii) limg—yp— f =sup{f(z) : x € I,z < b}.
The corresponding result for decreasing functions also holds.

(f) Let I := [a,b] be a closed bounded interval and let f : I — R be continuous on I. Then f

has an absolute maximum and an absolute minimum on I.

(g) Let I =[a,b] and let f : I — R be continuous on L. If f(a) < 0 < f(b), or if f(a) > 0> f(b),
then there exists a number ¢ € (a,b) such that f(c) = 0.

(h) Let I be a closed bounded interval and let f : I — R be continuous on I. Then f is uniformly

continuous on I.

(i) Let (z) be a convergent sequence in R. If a < x,, < b for all n € N, then ¢ < lim z, <b.

n—oo

Also, if @ < limy,, < 8 then there exists N € N such that a < y,, < 8 for all n > N.

(j) Let ACR,let f: A— R, and let ¢ € R be a cluster point of A. If
a< f(zx)<bforallz € A,z # c,
and if lim f(x) exists, then a < lim f(x) <b.
T—c T—c
Question 3. State and prove the Bolzano-Weierstrass Th. Yon may make use any results in
Q2. In particular you may wish to apply (b) and the bisection technique (Hint: any seq (z,) in
[a,b] = T U J = either I or J contains x,, for infinitely many n). If yon make use of (e) then you

must attach a proof of the existence for a monotone subsequence.
Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent sub-

sequence.

First Proof. Since the set of values {x,, : n € N} is bounded, this set is contained in an interval
I, := [a,b]. We take nq := 1.

We now bisect I into two equal subintervals I] and Iy, and divide the set of indices {n € N :
n > 1} into two parts:
Ay:={neN:n>ny,z,€l}, Bi={neN:n>ny,z,€l}.
If A; is infinite, we take Is := I{ and let ny be the smallest natural number in A;. If A; is a finite
set, then By must be infinite, and we take I5 := I}’ and let ny be the smallest natural number in B;.

We now bisect I into two equal subintervals I} and IY, and divide the set {n € N:n > ny} into
two parts:

Ay={neN:n>ng,x, €l}}, Bo:={neN:n>ngz, €li}.



If A, is infinite, we take I3 := I} and let n3 be the smallest natural number in As. If A, is a finite

set, then By must be infinite, and we take I3 := I} and let n3 be the smallest natural number in Bs.

We continue in this way to obtain a sequence of nested intervals [y D I3 D --- D I D --- and a
subsequence (7, ) of X such that x,, € I for k € N. Since the length of I} is equal to (b—a)/2%71,
it follows from Nested Intervals Theorem that there is a (unique) common point £ € I, for all k € N.

Moreover, since x,, and £ both belong to I, we have
|23, — & < (b—a)/2"7!

whence it follows that the subsequence (z,,) of X converges to &.

Second Proof. Firstly, we show that any bounded sequence (z,) has a subsequence that is
monotone. We will call x,, a peak if n > m = z, < z,, (i.e, if no term to the right of x,, is greater

than x,, ).

Case 1: X has infinitely many peaks. Order the peaks by increasing subscripts. Then

L,y ZﬂcmzZmek >"'7

s0 {Zm, } is a decreasing subsequence.

Case 2: X has finitely many (maybe 0) peaks. Let Zym,, Ty, - - -, Tm, denote these peaks. Let
s1 = m, + 1 (the first index past the last peak) or s; = 1 if there are no peaks. Since x4, is not a
peak, there exists so > s; such that z,, < zs,. Since x4, is not a peak, there exists s3 > s3 such

that x5, < xs,. Continuing, we get an increasing subsequence.

It follows that if X = (z,) is a bounded sequence, then it has a subsequence X’ that is mono-
tone. Since this subsequence is also bounded, it follows from the Monotone Convergence that the

subsequence is convergent.

Question 4. Suppose 1 < r < liminf x}/n € R, where n € N. Show that IN € N s.t.
r<z/"™ Vn>N,

o0
and that Y x, = +oc.
n=1

a—rT

2

Solution: Let ¢ = liminf xi/ "and e = . It follows from the definition of Limit Inferior that
there exists N € N such that

a—s<x1/", Vn > N.

n

This implies that x}«/ " > r, due to the fact that a — 5+ > r. It also yields that x, > r™ for all
n > N.



o0
Notice that the geometric series Y ™ = oo is divergent, since r > 1. By Comparison Test, we
n=1

(oo}
obtain Y z, = oco.
n=1

Question 5. In ¢ — § (or € — N) terminology show that

(a) If limx,, = € R and limy,, = y then
n n

limz,y, = zy.
n

. 22
(b) lim 48 —4,

(c) Let f,g9,F,G : (0,+00) — R be such that

lim F(z)=L;, lim G(x)=Ls (Li,LscR\{0})

Jim f(z) = +oo= lim g(x), lim (f(z)/2) =0,  lim (g(z)/z) =Ll (1,02 € R\{0}).
Then ; ,
IILIEO(F(x)/G(x)) = L—;, and wh%rr;o(f(x)/g(:r)) = é
Solution:

(a) Since lim,, y, = y, there exists Ny € N such that for any n > Ny, we have |y, —y| < 1. Tt
directly follows that |y,| < |y| + 1 for any n > Ng.

Fix ¢ > 0. Take ¢’ > 0 such that ¢’ = min{ sy, 1}. Since limy, z,, = x, there exists
N;(e) € N such that for any n > Nj(g), we have |z, — 2| < &’. Similarly, since lim,, y,, = y, there
exists Na(e) € N such that for any n > Na(e), we obtain |y, — y| < £’

Hence, the triangle inequality implies that
|Znyn — 2yl <|2pYn — 2ynl
<len — 2| lyn] + ] [yn — yl
<e'-(Jyl +1) + (2| + 1)’
=(lz| + [yl + 2)¢’
<e,
for all n > max{Ny, N1(¢), Na(¢)}. This implies that (z,y,) is convergent and lim z,y, = zy.
(b) Let e > 0, take 6(e) = min{3, 5}

Suppose |z — 2| < §(e), then

1< 2<1 i 3< <5
5 <7 5 e g<z<g,



which implies that 22 — 1 > 1 and |z + 2| < 5.

It follows that

2 +38 22 +8—4(z2 1)
_ 4] =

22 —1 2 -1
_|3(z* —4)
] 221
@t —2)

2% — 1|
5
<32 |@@~2)
<15-4(¢)
<e
Therefore lim “”Zf? =4.
x—2 %
|L2|?

(c) Fix € > 0, and let ¢ = {me, 1}. Since lim F(x) = Lq, there exists M; € R such
1 T —00
that |F(z) — L1| < € for all x > M;. Similarly, since li_>m G(z) = Lo, there exists Ms € R such that

|F(z) — La| < € for all z > Ma.

Let M (e) = max{My, M>}. Then for any = > M (e),

‘F(m) L
G(Z‘) L2

_ ‘LQF(:E) — L,G(z)
LyG(x)
_ ‘LzF(x) — LoLy + LoLy — ng(x)‘

LQG(&L’)
< |Lo||F(z) — L1| + |Ly1] - |G(x) — Lo|
- |L2G(z)]
| La|€’ |Ly|€’
< +
|La| - (|L2l/2)  |L2| - (|L2]/2)
2 (|L1| + |Lal)

= —€

|Lo|?

<e

)

that is, zlggo Glo) 7%

Next we show that lim, . (f(z)/g(x)) = Z—l For z > 0, we define F(z) := @ and G(z) := 22

Oy g”
By above assumption we have lim F(x) = ¢; and li_}In G(z) = {s.
Tr—r00 €T o0
Notice that _
/(@) = f(@) L Ji(x)’ for all x > 0.
g9(z) z  g(x)  G(x)



Since limg_, oo ﬁ(x) = {1 and lim, o, G(z) = {5 with £1, 05 # 0 , it follows by above result that

f(@) Fz) _ 6

lim —= = lim — = —.
a0 g(x)  a=o0 G(z) Lo

ﬁ x El
Q = — is similar to that used in our previous

Remark: The method to prove lim,
7 G(z) 2

argument.



